
A linear algorithm for chunk linking

paper #963

Abstract 1 Tagging, chunking and
"clausing"Tagging, chunking, and even "clause

bracketing" are now classical processes
(since the early nineties) which have a
linear complexity in time relatively to the
number of processed words.

In this section, we focus on comparing
computing properties of classical formal
grammar parsers, to the ones of tagging,
chunking, and clausing.

This article presents an original algorithm
to link chunks in linear time. This
algorithm has been implemented in two
linear parsers : the first parser won the
GRACE international contest for French
taggers, and the other is used in an
industrial context : in a text-to-speech
system, to compute prosody, where linear
complexity is a prerequisite.

1.1 From parsing with formal
grammars ...
Traditionally, the parsing problem is solved
within the frame of the compiling model, as the
parsing of a programming language, which is
an exhaustively defined code (on the contrary, a
natural language is only partially known). This
solution is combinatorial : all the combinations
of the attribute values are enumerated in the
dictionary (categories, genders, numbers,
persons ... of word written forms), which is
supposed to be exhaustive, and all the
combinations of structures are "exhaustively"
enumerated in a formal grammar (inventory of
phrase and sentence structures).

Introduction
An important stake in parsing strategies today is
to produce robust parsers, able to process raw
linguistic material at a constant and foreseeable
rate. Such parsers may be included in industrial
contexts as text-to-speech systems or newsfeed
processing on internet, where linear complexity
is a prerequisite.

From these data, the combinatorial process gives
a value to the attributes of the processed units :
words and phrases of an input sentence. There
is a valuation criterion of a whole combination
(all words of a sentence have a category, and all
phrases are delimited and have a structure) : a
combination is evaluated in a Boolean way on
the grammaticality of the sentence according to
the formal grammar.

Tagging (for instance, Brill 1995, Chanod
1995) and chunking (Abney 1990) gave a new
way to process raw material in linear
complexity.
If we call "clausing" the two tasks : clause
bracketing and computing chunk main
functions inside a clause, we can say that Aït-
Moktar and Chanod (1997) achieve "clausing" :
it works the same way as chunking. From the
functional point of view, "clausing" fills part of
the gap in the way up to classical parsing
functions.

The theoretical complexity in time of such a
combinatorial process is exponential according
to the number of words of the parsed sentence.
The claimed practical complexities in the
literature are in O(n3) to O(n6) for Tree
Adjoining Grammars.But to reach classical parsing functionalities, an

algorithm for linking is needed, and to fill
industrial needs, it has to be of linear
complexity. This is the aim of this article.

Within the frame of this model, links are
implicitly coded in the structure of clauses or
recursive phrases. Furthermore, everything has
to be successfully parsed between two linked
words for the parser to compute the link. Thus,
a failure on computing a link may be due to a
lack of coverage of the grammar.

The paper is divided into three sections : the
first section focuses on computing properties of
tagging, chunking, and "clausing", the second
presents our linking algorithm and gives
examples, and the third quotes two parsers
which use this algorithm : in the evaluation
contest GRACE, and in the industrial context of
a text-to-speech system.

1.2 ... to contextual deductions in
tagging
When tagging appeared, it was used to do
shallow parsing on raw material. But, as taggers
give less tags for a token than a given

dictionary, they can help to reduce the
combinatory aspect of formal grammar parsers
while replacing morpho-lexical analysis before
syntactic analysis.

• at step 1, when chunk i arrives, it is linked to
the virtual chunk, which can be invoked at any
time in the rules; for instance, if chunk i is a
nominal chunk, it is placed into a waiting
position for a verbal chunk (subject-verb link) :But the main contribution of tagging is to focus

on explicitating the deduction process by using
contextual properties (new knowledge upon
language is injected into the process) rather
than explicitating expected structures.

 virtual chunk

chunk i

 link type
The tagging process consists in applying
statistical or symbolic rules to tokens, and has a
linear complexity in time.
So, tagging shows a way of renewal in parsing
strategies. • at step 2, when chunk j arrives (for instance a

verbal chunk), a rule condition verifies whether
a chunk (here chunk i) is linked to the virtual
chunk by a link of a specified type (in our
example, subject-verb) :

1.3 Tagging works better while
chunking
The concept of chunk appeared in the early
nineties, in Abney (1990). In the very first lines,
he presented it as a prosodic segment. It is also
known as "core phrase" or "non recursive
phrase" in opposition to the chomskian
recursive phrase. chunk j

 virtual chunk

chunk i

 link type

The chunk is a quite easy segment to
automatically delimit, with very little
knowledge : the beginnings of chunks are often
grammatical words, which are in finite number.
About applications, nominal chunks are useful
terms in automatic indexation and information
retrieval : that is why chunkers became usual.

- then, still in step 2, an action of this rule links
both chunks with a link of the same type :

chunk j

 virtual chunk

chunk i

 link type

 link type

Vergne and Giguet (1998) have shown that
tagging is easier and more accurate inside typed
chunks than in a flow of words : most often, a
grammatical word at the beginning of a chunk
gives the type of the chunk, and the type of the
chunk constraints the word categories inside it. - at the end of step 2, the link between chunk i

and the virtual chunk is discarded, and that
means in our example that this subject has
found its verb and does not wait for a verb any
more :

Aït-Moktar and Chanod (1997) have transposed
this way to process words inside chunks in order
to process chunks inside clauses on the same
way. Their incremental finite-state parser
segments a sentence into phrases and clauses
and computes chunk functions inside clauses.
This is a great progress toward the functions
performed by a traditional formal grammar
parser, while keeping a linear complexity and
processing raw material. chunk j

 virtual chunk

chunk i link type

2 Linking chunks We may notice this algorithm is very general : it
works whatever the length and the structure of
the segment which separates the two linked
chunks; and it does not depend on the
processed natural language, because the process
only works with chunks types, and does not
depend on written forms any more.

The algorithm we present is able to link any
kind of linguistic unit, but we used it first to link
chunks in sentences represented as a chain of
chunks.

2.1 Principle of the linking algorithm
The algorithm links 2 chunks into 2 successive
steps by means of a virtual chunk, and we
present it as a process on a graph in which
nodes are chunks and arcs are links between
chunks :

2.2 Two examples

2.2.1 Subordinated chunks
Here is the beginning of a sentence to be
parsed, where subject and verb are not
contiguous :

- the flow of chunks, is processed in their arrival
order (in the diagram, first the chunk i , then the
chunk j).

Technology stocks, which had been among
the most volatile sectors last week, were also
very active ...

The original Pan Am World Airways began
flying in 1927 and grew into one of the
world's largest airlines ...

At this level, chunking is already done : At this level, chunking is already done :
• at step 1, chunk i arrives : it is the first
Nominal chunk of the sentence (Technology
stocks), coded N in the diagram; it is linked to
the virtual chunk; it is placed into a waiting
position for a verbal chunk, which may arrive or
not :

• at step 1, chunk i arrives : it is a Verbal
conjugated chunk (began flying), coded V in
the diagram; it is linked to the virtual chunk; it
is placed into a waiting position for a co-
ordinated verbal chunk, which may arrive or
not :

subject-verb

N

 virtual chunk

V

 virtual chunk

V cV

- then, between the two steps, the following
chunks arrive : they are analysed as an
embedded relative clause (which had been
among the most volatile sectors last week);

- then, between the two steps, the following
chunk arrives : it is analysed as a prepositional
nominal chunk (in 1927);

• at step 2, chunk j arrives : it is a co-ordinated
Verbal chunk (and grew), coded cV in the
diagram; a rule condition verifies whether a
verbal conjugated chunk is linked to the virtual
chunk by a V cV link :

• at step 2, chunk j arrives : it is a Verbal chunk
(were also very active), coded V in the diagram;
a rule condition verifies whether a nominal
chunk is linked to the virtual chunk by a
subject-verb link :

V cV

 virtual chunk

V cV
subject-verb

N V

 virtual chunk

- then, still in step 2, an action of this rule links
both verbal conjugated chunks with a V cV
link :

- then, still in step 2, an action of this rule links
subject and verb with a subject-verb link :

subject-verb

N Vsubject-verb

 virtual chunk

V cVV cV

 virtual chunk

V cV

- at the end of step 2, the link between the
subject and the virtual chunk is discarded, and
that means here that this subject has found its
verb and does not wait for a verb any more :

- at the end of step 2, the link between the first
verbal chunk and the virtual chunk is discarded,
and that means here that this verb has found its
co-ordinated verb and does not wait for one any
more :

N Vsubject-verb

 virtual chunk

V cVV cV

 virtual chunk

2.2.2 Co-ordinated chunks 2.3 Implementation in declarative
rules and complexityHere is the beginning of a sentence to be

parsed, which contains co-ordinated verbal
chunks : This process is implemented into 2 rules : the

first is triggered while processing chunk i at step

1, the second is triggered while process chunk j
at step 2. It is generalised for any type of link :
for instance subject-verb, verb-object, co-
ordination of any type of chunk, nominal
chunk-relative clause.

agreements. It was an important factor which
gave us the first place.
The practical linear complexity of this parser is
illustrated by the diagram in appendix : for a
corpus of 2,500 sentences from the newspaper
Le Monde, every sentence is represented by a
point according to its number of words and its
parsing time in seconds. The parsing rate is
constant and foreseeable : about 0.3 seconds
per word. The linear complexity is a property
of the algorithm, and then, the constant parsing
rate depends on the processor speed.

The process consists in passing a constant
number of rules of the form "conditions ⇒
actions" once on every chunk and therefore has
a linear complexity.
Conditions are on attributes of chunks and on
links between chunks, and actions may give
values to attributes, set or discard links. Chunks
are processed in a flow, that is at a constant rate
(a constant number of chunks per second). A
chunk in the flow is completely processed, in a
unique pass.

3.2 Parsing to compute prosody in a
text-to-speech system
As Abney wrote (1990 and 1995), chunks are
prosodic groups, and we made the hypothesis
that pauses are proportional to the link length.

This linking algorithm allows to build parsers of
linear complexity (without a formal grammar),
which have the same main functions as formal
grammar parsers : segmenting the flow into
tokens, chunks, clauses and sentences, and
linking these chunks.

That is why a parser is necessary to compute
prosody from chunks and chunk links, in a
text-to-speech system which has to say long
texts as papers and novels in an understandable
way.

3 Two parsers using this
algorithm

On the other hand, such a parser must have a
linear complexity to work in the flow, faster
than the speech rate.
Our parser with its linking algorithm has been
included into such a system, named KALI4,
which is already marketed for French synthesis.
The English synthesis is now in progress5.

This algorithm has been implemented in two
linear parsers : the first won the GRACE contest
for French taggers, and the other is used in an
industrial context : in a text-to-speech system, to
compute prosody.

Conclusion3.1 The parser which competed in
GRACE We have presented in this paper an algorithm

for linking chunks, and this algorithm is of
linear complexity in time. Thanks to this
linking algorithm, the parser that we presented
to the GRACE contest has been successfully
evaluated comparatively to other parsers and
taggers. This linking algorithm has been
included into an industrial text-to-speech
project which needed a parser to compute
prosody in linear time.

From 1995 to 1998, the GRACE1 contest had
the aim to compare French taggers in a unique
protocol. It was organised by two CNRS2

laboratories : LIMSI and INaLF. The
competitors where 14 laboratories (France : 8,
Swiss : 2, Germany : 3, Canada : 1), and 8
companies (including IBM France, Xerox
Grenoble, and AT&T Bell). The tagset came
from the MULTEXT3 tagset : 11 main
categories, and 311 different tags.

Our team now participates to a new industrial
project concerning linguistic processing on
newsfeed on internet. A new parser has been
developed, and a new rule formalism has been
designed. It includes our linking algorithm, with
a generalisation into two directions (as
announced above at the end of the subsection
2.1) : 1) the level direction : it can link other
types of constituents (clauses, sentences and
paragraphs), and 2) the language direction : it
parses French and English newsfeed. The results
of this new parser are still to be evaluated.

We have presented our parser at this contest.
Chunking allowed us to tag tokens inside
chunks (it is more accurate). Linking chunks
allowed us to give the correct tag to an extra 3%
of tokens, the ones which are impossible to tag
solely by the context inside a chunk (as "de",
"des", "du", "que"), and ambiguous verbs which
are alone in their chunk (as "ferme", "montre"),
and it allowed us also to compute genders et
numbers from subject-verb links and

1 GRACE : Grammaires et Ressources pour les
Analyseurs de Corpus et leur Evaluation
http://www.limsi.fr/TLP/grace/

4 Some wav files are available on :2 CNRS : Centre National de la Recherche Scientifique
- France. http://elsap1.unicaen.fr/demokali.html
3 http://www.lpl.univ-aix.fr/projects/
multext

5 This project has been partially financed with the
FEDER European funds.

References
Abney S. (1991). Parsing By Chunks. In: Robert

Berwick, Steven Abney and Carol Tenny (eds.),
Principle-Based Parsing. Kluwer Academic
Publishers, Dordrecht.

Abney S. (1995). Chunks and Dependencies: Bringing
Processing Evidence to Bear on Syntax. In:
Computational Linguistics and the Foundations of
Linguistic Theory. CSLI. pp. 145-164.

Abney S. (1996). Tagging and Partial Parsing. In: Ken
Church, Steve Young, and Gerrit Bloothooft (eds.),
Corpus-Based Methods in Language and Speech. An
ELSNET volume. Kluwer Academic Publishers,
Dordrecht.

Aït-Mokhtar S. and Chanod J.-P. (1997) Incremental
Finite-State Parsing. Proceedings of ANLP'97,
Washington, pp.72-79.

Brill E. (1995) Transformation-Based Error-Driven
Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging. Computational
Linguistics.

Chanod J.-P. and Tapanainen P. (1995) Creating a
tagset, lexicon and guesser for a French tagger.
ACL SIGDAT workshop on "From Texts To Tags:
Issues In Multilingual Language Analysis". Dublin,
pp. 58-64.

Chanod J.-P. and Tapanainen P. (1995)
Tagging French - Comparing a Statistical and a
Constraint-Based Method. Seventh Conference of the
European Chapter of the ACL (EACL'95), Dublin,
pp. 149-156. .

Giguet E. (1998) Méthode pour l'analyse automatique
de structures formelle sur document multilingues.
Ph.D thesis, l'Université de Caen.

Vergne J. and Giguet E. (1998) Regards Théoriques
sur le “Tagging”. Cinquième conférence annuelle :
Le Traitement Automatique des Langues Naturelles,
TALN'98, Paris, pp. 22-31.

Appendix
(see last page)

0
,0

0

5
,0

0

1
0

,0
0

1
5

,0
0

2
0

,0
0

2
5

,0
0

3
0

,0
0

3
5

,0
0

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

p
ar

si
n
g
 t

im
e
 f

o
r

a
se

n
te

n
ce

 i
n
 s

e
co

n
d
s

le
n
g
th

 o
f

a
se

n
te

n
ce

 i
n
 n

u
m

e
r

o
f

w
o
rd

s

25
00

 s
en

te
nc

es
 f

ro
m

 th
e

ne
w

sp
ap

er
 L

e
M

on
de

25
/5

/9
6

