
 

New Methods in Language Processing 94        22/04/05           (final version) - 1/8 - 

 A non-recursive sentence segmentation, 
applied to parsing of linear complexity in time 

 
Jacques VERGNE 

Jacques.Vergne@univ-caen.fr  
LAIAC  Université de Caen   F-14032  Caen cedex  France 

 
 

Abstract 
First, we intend to show that parsing is often seen 

as a combinatorial problem, for some reasons which 
are not due to properties of natural languages.  

Secondly, we describe a method for building a 
syntax, that we apply to build the foundations for a 
syntax of natural languages. 

Thirdly, we apply these syntactic foundations to 
build a non-combinatorial parser, therefore one of 
linear complexity in time. 

 

Keywords: syntax,  parsing,  linear complexity 
 

Introduction: research domain 
This work takes place within a fundamental re-

search on natural language syntax.  
Syntax is seen as a science of a real object: texts 

written in a natural language, and also seen as a 
study of forms, irrespective of meanings. 

Our method is scientific and experimental: 
studied objects are corpora1, with manual 
observations, computer aided observations (with 
statistics) and experiments, to find syntactic 
regularities and build a theory which models them. 

Computers and parsing make up an experimental 
device, an observation tool of the object, and a mo-
delling tool of the theory, which enables us to make 
linguistic hypotheses and evaluate their validity. 

Parsing methods and strategies are by-products of 
linguistic concepts: we make the hypothesis that the 
better linguistic concepts are modelled, the better the 
parser works. 

This work is mainly about French2 on both 
aspects: linguistic study and parsing. A precise lin-

                                                             
1 Every example in this paper comes from a corpus. 
2 The French corpus is made up of two informative 

(scientific) texts: the preface of a book about pattern 
recognition, and a paper in a review about marine biology 
(7000 words, 250 sentences).  

guistic study has also been done about Spanish3 and 
English4. Studies about the transposability of con-
cepts have been done on German, Polish, Basque, 
Japanese (with speakers of each natural language) 
and Latin. Otherwise proven, these concepts seem to 
be general properties of natural languages. 

 

I. Is parsing really a combinatorial 
problem? 

Parsing is usually seen as a combinatorial prob-
lem; it implies that the best algorithms are of 
quadratic complexity. We want to show here that it 
is not due to properties of the processed material (a 
natural language), but to non-appropriate linguistic 
concepts and parsing strategies. 

I.1  An usual definition of parsing 
Parsing a sentence usually involves: tagging and 

linking words, delimiting and identifying phrases,  
assigning syntactic functions to phrases, and out-
putting all possible analyses (zero or more) 
according to a formal grammar. 

I.2  A definition of a combinatorial 
problem 
A combinatorial problem is a problem where we 

have to choose attributes of objects (categories of 
words), but we do not have any criterion to directly 
make an individual choice (this word has this cate-
gory), we only have criteria to make a diagnostic on 
the whole solution: this chain of words is or is not a 
sentence according to a set of word tags and to a for-
mal grammar. Individual choices are then made at 
random, and if a choice is bad, another is tried (that 
                                                             

3 In collaboration with Eduardo López Gonzalo and 
Luis A. Hernández Gómez of the E.T.S.I. Telecomuni-
cación, Universidad Politécnica Madrid, on a corpus 
(1700 words, 80 sentences) from an economics review 
(see [López 93], chapter 4, pages 115 to 169). 

4 The English corpus is made of a paper in the same 
review about marine biology (2200 words, 100 sentences).  



A non-recursive sentence segmentation, applied to parsing of linear complexity in time 

- 2/8 - New Methods in Language Processing 94        22/04/05           (final version) 

is usually called backtracking); this implies a tree 
process where none or many solutions are found. 

I.3  Why are parsers usually combi-
natorial? 
Three factors make parsers combinatorial (only 

one of them would be enough). They mainly lie in 
non-appropriate linguistic concepts leading to non-
appropriate parsing strategies. 

I.3.a  Word polycategory 
A given written form may have different cate-

gories in different contexts. The most frequent poly-
category is between noun and verb. Polycategory 
occurs in context but is usually not solved in 
context, with context-free grammars: all possible 
categories are put in the dictionary (is it possible to 
do?) and will be tried while parsing. 

I.3.b  The linguistic concept of phrase 
Chomsky defined the concept of phrase in a 

theory of competence, without having concern for 
parsing, which has to deal with real texts, therefore 
performance. He defined the concept of phrase as 
comprising its complements, which themselves are 
phrases. This recursive definition amounts to define 
at the same time a segment (phrase) and a 
dependency (a complement-phrase depends on a 
phrase), and to say that this dependency is marked 
by contiguity. For instance, the following segment is 
a single phrase (which comprises a NP which 
comprises a NP): 

 

( the Council  (for  the Exploration  (of  the Sea ) ) ) 
    • <————————— • <——————— •                

 

A recursive segment makes the segmenting 
problem combinatorial, because it mixes segmenting 
and linking from both linguistic and algorithmic 
points of view. 

I.3.c  The use of formal grammars 
In parsing, a formal grammar has two functions at 

the same time: it guides the parsing process which 
chooses a rule to apply, and it also validates phrase 
patterns; these two functions may be separated in 
two more specialised tools. 

The use of formal grammars makes parsing com-
binatorial because there are more than one 
applicable rule at a given time, at different places in 
the sentence, without any criterion to choose which 
rule at which place. In formal grammars, phrases are 
modelled in recursive rules, which have to be 
applied an unknown number of times, without any 
criterion to choose among them. 

I.4  How to build a non-combinatorial 
parser? 
Let us make the hypothesis that it is possible to 

build a non-combinatorial parser because non-
semantic ambiguity is an artefact. 

A non-combinatorial parser should output the 
only right analysis, because it should have all the 
criteria to make all choices. 

I.4.a  Word polycategory 
Word polycategory emerges from a lexical view 

of parsing: parsing usually begins with consulting 
dictionaries, in which all words with all their 
possible categories are supposed to be collected. 
However, we can see parsing as a contextual 
resolution, where contexts and positions of words in 
a sentence are more important than consulting 
dictionaries. 

We use the solution either to tag words by a con-
textual deduction from some written forms (preposi-
tion, determiner, ...), or to give a single default cat-
egory coming from a morphological study. 

I.4.b  Non-recursive segments 
Let us conceptually separate segmentation and re-

lation: let us define segments without using relations 
(this is a fundamental principle). 

By defining non-recursive segments (and validat-
ing them by corpora studies), we remove this cause 
of "combinatorialness". It implies a real segment hi-
erarchy between word and sentence, and allows a 
global parsing strategy by climbing up in the seg-
ment hierarchy; this has the advantage of simplify-
ing and specialising every level: segments of a level 
are defined and delimited in terms of segments of 
the level below, and relations between segments of a 
level are within a segment of the upper level. Once a 
level is parsed, larger segments are delimited and 
will be the base for parsing the upper level. 

Non-recursive segments also allow to segment 
first, and to link after, thus algorithmically separat-
ing these two problems; segmenting alone is non-
combinatorial, and linking segments within an upper 
level segment is positional, then non-combinatorial; 
only some "free" segments as "prepositional 
phrases" cannot (now) be linked by positional clues. 

I.4.c  A propagation of local deductions 
It is possible to tag nearly every word by propaga-

tion of local deductions: from the categories of some 
contiguous words, it is possible to make totally sure 
deductions on the categories of some next words in a 
sentence.  

These deductions rest on linguistic properties 
(therefore non-probabilistic), and are independent of 
these next words; it means that a dictionary is not 



Jacques Vergne 

New Methods in Language Processing 94        22/04/05           (final version) - 3/8 - 

necessary to tag many words, mainly adjectives and 
nouns, the category of which can be deduced by 
pure positional means. 

 

II.  Syntactic foundations 
We will first describe an approach for building a 

syntax of natural languages, and then present the 
syntactic foundations in the same three stages: 

II.0  How to build a syntax of natural 
languages ?  
Building a syntax of natural languages involves 

three successive stages, mainly for conceptually 
separating segmentation from linking: 

1) Defining a hierarchy of non-recursive 
segments 

In such a hierarchy, every segment is non-recur-
sive, therefore made up of segments of another type 
than itself: a segment of the level below.  

While climbing up in the segment hierarchy, 
sequences are made up of words, blocks are made up 
of sequences, sentences are made up of blocks, and 
so on with paragraphs, sections, chapters and books.  

This hierarchy of segments is to be considered in 
total generality from word to text, through the sen-
tence and the paragraph (see [Lucas 92] on 
paragraph structure, and [Lucas 93] on book 
structure). The present work concerns this hierarchy 
between word and sentence, and is to be placed in a 
wider research between word and text. 

Segment structures are described in terms of seg-
ments of the level below: sequence structures in 
terms of words, block structures in terms of se-
quences, sentence structures in terms of blocks. 

Segment positions and order are described within 
a segment of the level above: words positions within 
a sequence, sequences positions within a block, 
blocks positions within a sentence. 

Particular attention is given to the topology of the 
linear chain, seen as a one-dimensional space: seg-
ments hierarchy, topological relations of contiguity 
or "insertion" between segments of the same hierar-
chic level. At this stage, these segments are defined 
according to their place in the hierarchy, their rela-
tive positions at a given level, their structures in 
terms of the segment below, but no linguistic rela-
tion (complementation, subordination, or depen-
dency) is used to define them (it would imply a re-
cursive definition): segmentation and relation are 
conceptually separated. Of course, segments are de-
fined according to multilingual corpora studies. 

2) Defining a linguistic relation between these 
segments 

Once segments are defined, it is possible to define 

a linguistic relation between them at every level: de-
pendency between two segments: 

- dependencies between two words within a se-
quence are given by words positions in the sequence 

- dependencies between two sequences within a 
block are given by sequences positions in the block  

- dependencies between two sequences of 
different blocks within a sentence are not directly 
given by sequences positions in the sentence, but are 
constrained by topological properties of the 
dependency tree (see II.2.c below). 

3) Defining a segment made up of contiguous 
linked segments 

Contiguous dependent sequences make up a new 
segment from sequences (1) and dependencies (2): 
the chain of contiguous dependent sequences. 

II.1  Defining a hierarchy of non-
recursive segments 
Between words and sentences, we observe 2 

levels of non-recursive segments:  
- nominal sequences and verbal sequences are 

made up of contiguous words; sequence structures 
are defined in terms of words; relations inside se-
quences are relations between words; sequences are 
in a topological relation either of contiguity  or 
discontiguity   with other sequences; 

- blocks are made up of 1 to 3 contiguous se-
quences (in French); block structures are defined in 
terms of sequences; relations inside blocks are rela-
tions between sequences; blocks are in a topological 
relation either of contiguity  or discontiguity  or 
surrounding-insertion. with other blocks. 

Thus, a sentence can be seen at these two levels:  
- as a chain of contiguous sequences  
- as a chain of contiguous or inserted blocks  

II.1.a Nominal sequences, verbal sequences and 
clips 

The term "sequence" is chosen to emphasise con-
tiguities around the noun or verb, to stress the 
nominal-verbal symmetry (on both linguistic and 
algorithmic aspects) and also to distinguish it from a 
(recursive) phrase: 

a nominal sequence is made up of one noun and 
its immediate satellites: partitive, determiner, 
adjectives and adjective adverbs 

a verbal sequence is made up of one verb (in all 
its forms: conjugated, infinitive, participle) and its 
immediate satellites: auxiliary, negation, non-subject 
clitics, verb adverb. 

In both types of sequences, satellites depend on 
the central element: a noun or a verb. 

If we remove nominal and verbal sequences from 
a sentence, we have left prepositions, subordination 



A non-recursive sentence segmentation, applied to parsing of linear complexity in time 

- 4/8 - New Methods in Language Processing 94        22/04/05           (final version) 

or coordination conjunctions, relative pronouns, 
punctuation (commas, brackets, colons, full stops) 
and some adverbs. Let us define clips as these 
remaining segments: at the sequence hierarchic 
level, a clip is most often a single monosyllabic 
word (even a single comma); but it may contain up 
to 4 elements: comma - coordination conjunction - 
block adverb - preposition: 

example:  ,  and   also  from   earlier work 
At the sequence hierarchic level, a sentence is a 

tripartition of 3 types of contiguous segments: clips, 
nominal sequences and verbal sequences: a sentence 
may be completely coloured in 3 colours according 
to segment type. In the three corpora of scientific 
texts, the percentages of the 3 types of segments are 
in narrow forks: clip segments: 39% to 41%, 
nominal sequences: 40% to 47%, verbal sequences: 
12% to 18%; the ratios of nominal sequences / 
verbal sequences are between 2/1 and 4/1. 

two sentences segmented in sequences and clips: 
( nominal sequences, verbal sequences, clips ) 

 

Many years   ago   such a project    might not 
have been undertaken      because    it   was 
thought  that   fish  emigrated    from   their 
native stocks    to perhaps  a significant extent  . 

 

Dans     les réseaux trophiques marins                          
  ,  de nombreuses molécules énergétiques                     
sont transférées   entre    les différents niveaux    
d' organisation     structurant     les échanges . 

 

II.1.b  Blocks 
block structure: 
A block is made of a clip (on  because) and a 

block body, which is made up of 1 to 3 sequences:  
[ on   adult cod ]     [ because  it  was thought] 
[  p        N      ]     [     P      N          V       ] 

At the block hierarchic level, clips mark the 
beginnings of blocks; they segment the sentence in 
blocks, they "clip", they attach every block into the 
sentence structure; they increase the ability to 
segment while listening or reading; they are few in 
number, and enable an unknown natural language to 
be easily segmented. 

The central block of a sentence (central from the 
structural point of view) is the only block without a 
clip: 
[ Introduction ]    [ N ] 
[ such a project  was undertaken ] [ N V ] 
[ the Council   collects  information ] [ N V N ] 

 
The block body structures are:  

central block (without a clip) / others (with a clip) 
[ N ]   10%  / 70%   [ p N ] 
[ V ]     [ V N ] 0.5% / 20%   [ c V ]   [ q I ] 
[ N V ]  [ N V N ] 90% / 10%   [ P N V ] 
[ V N ]  0.5% /0.5%   [ P V N ] 

(these statistics are given for the French corpus) 
 

At the block hierarchic level, a sentence is made 
up of contiguous or inserted (about 1/5) blocks: 
some blocks surround other blocks. 

The central block is generally the first block, but 
it may be preceded by some anteposed blocks. 

 

two sentences segmented in contiguous blocks: 
( [blocks] are in square brackets) 
 

[ Many years   ago ]    [ N  p ] 
[ such a project  was undertaken ]    [ N  V ]  
[ because   it   was thought ]    [ P N V ] 
[ that   fish  emigrated ]      [ P N V ] 
[ from   their native stocks ]     [ p N ] 
[ to perhaps   a significant extent ]  [ p w N ] 
 
[ Dans les réseaux trophiques marins ] [ p N ] 
[ , des molécules sont transférées ] [ ,  N V ] 
[ entre  les différents niveaux ]    [ p N ] 
[ d' organisation ]     [ p N ] 
[ structurant les échanges ] .  [ R N ] 
 

Blocks insertion is a major syntactic phenomenon, 
and its precise study clarifies problems of 
segmentation.  

definition of block insertion: 
the inserted block (indentation = 1) cuts the sur-

rounding block into 2 non-empty parts (indentation 
= 0); the following examples are "topological block 
structures", exactly like the pretty printing of a block 
structured programming language: 

 

[ surrounding block: first part  indentation 0 
   [ inserted block ]   indentation 1 
  surrounding block: second part ] indentation 0 

 

[ the International Council [ N    
 [  for   the Exploration ]   [ p N ] 
 [  of   the Sea ]   [ p N ] 
   collects information ]    V N ] 

 

insertion points of a block in another block:  
These insertion points are few in number, because 

we observe that sequences are never cut. 
We can deduce these 3 insertion points from the 

block structure: 
 

[ clip [3] subject  [1] verb [2] object ] 
 

[1] between subject sequence and verb: 85% 
[2] between verb and object sequence:  12% 



Jacques Vergne 

New Methods in Language Processing 94        22/04/05           (final version) - 5/8 - 

[3] between clip and block body:  3% 
 

some sentences segmented in contiguous blocks, 
with some inserted blocks, with indentation 1: 
 

- [1] blocks inserted between subject and verb:   
 

[ The exchange  
 [ between  the Faroe Islands ] 
 [ and  Faroe Bank ] 
is perhaps intermediate ] . 

[ N    
 [ p N ] 
 [ c N ] 
  V ] 

 

 

[ La mesure  
 [ de  concentration ]  
 [ de  chlorophylle ]  
  est utilisée ] 
[ pour   estimer la biomasse ]  . 

[ N    
 [ p N ] 
 [ p N ] 
  V ] 
[ q  I  N ] 

 

 

- [2]   blocks inserted between verb and object: 
 
[ on  attribue 
 [ à   le point inconnu ]  
  la classe ]  
[ de   son plus proche voisin ] 

[ N  V  
 [ p N ] 
  N ] 
[ p N ] 

 

insertion indentations of a block in another block:  
Indentation 0 (non-inserted blocks) is the most 

frequent (76% to 82% in the three corpora); then 
comes the insertion with indentation 1, almost the 
only way to insert a block (24% to 18%); 
indentation 2 is very rare, almost only for 
prepositional blocks (<1%); indentation 3 has never 
been observed; these statistics are very regular for 
different natural languages.  

On the contrary, segment insertion indentations of 
programming languages (e.g. ALGOL, Pascal, etc.) 
have no limit: that is why recursiveness is needed to 
describe their syntax. 

 

inserted blocks typology:  
The commonest inserted blocks are prepositional 

blocks (65%), followed by coordinated nominal 
sequences (16%), then past participles without an 
auxiliary (10%), then subordinated clauses: relative 
clauses, then circumstantial clauses (for French). 

We notice that the more verbal a block is, the 
harder it is to insert it in another block. 

 

a sentence segmented in blocks, with some 
inserted blocks, with indentation 1 and 2: 

 

[ Les problèmes  
 [ où  le nombre  
  [ de  les mesures ] 
   est important ]  
  induisent  un traitement ]  
[ de  ce type ]  . 

[N  
 [pn  N  
  [p  N ] 
  V ] 
 V  N ] 
[p  N ] 

 

 
 

II.2  Defining a linguistic relation 
between segments: dependency 
II.2.a  Determination dependency and actancial 

dependency  
Tesnière places two types of dependency on the 

same level ([see Tesnière 59] pages 102 and 144): 
the dependency of an "actant" on a verb, which we 
can call "actancial" dependency, and the dependency 
of an adjective on a noun, which we can call 
"determination" dependency.  

Let us focus on determination dependencies. For 
an adjective depending on a noun, a past participle 
on a nominal sequence, and a conjugated verb on its 
subject nominal sequence, agreement marks deter-
mination dependency (in French, German, Spanish, 
...); examples: 

 
natural ——> mortality  

 
[ the proportions  [recovered] were not shown ] 
 • <——— -1———•  
   <————————— -2————————•  

 

II.2.b Determination dependency and contiguity 
at sequence level 

If we observe the same dependency type (deter-
mination dependency) at the same hierarchic level  
(sequences), we have homogeneous sight: we then 
observe (for French) that most sequences (70%) 
depend on the preceding sequence (their "reigner", 
Tesnière's "régissant"). 

In other words, the most frequent mark of 
determination dependency between 2 sequences is 
contiguity. Let us define the dependency length as 
the number of sequences from a sequence to its "rei-
gner" sequence: contiguity <=> dependency length 
= -1 (or 1, if anteposed). Here is the distribution of 
dependency lengths on the French corpus: 

 

0%

10%

20%

30%

40%

50%

60%

70%

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3

dependencies

dependency

length

 
 
Which dependencies are not marked by 

contiguity? 



A non-recursive sentence segmentation, applied to parsing of linear complexity in time 

- 6/8 - New Methods in Language Processing 94        22/04/05           (final version) 

A sequence does not depend on the preceding 
sequence only in the 4 following cases: the second 
part of a surrounding block, a coordinated sequence, 
an anteposed block, or a second postposed actant or 
circumstant of the same sequence. 

 

In the sentence below (next page), every sequence 
depends on the preceding sequence (dependency 
length = -1), except two: collects depends on the 
Council 3 sequences before (dependency length = -
3), and make depends on collects 4 sequences 
before (dependency length = -4). 

II.2.c A sequence dependency tree 
Definition: the sentence below (next page) gives 

an example of a dependency tree in which: 
 
root, nodes and leaves are sequences:   • 
branches are determination dependencies between 

sequences:   •<—— -1——•  or   •<—— -2——• 
a node with one branch implies a dependency 

marked by contiguity:  •<—— -1——• 
a node with two branches implies a dependency 

marked by contiguity (the first branch) and another 
not marked by contiguity: the second branch 
continues (is linearised) when the first is finished (at 
its leaf):    •<——————— -2————————• 
 

[the Council  [ for the Exploration ]  [  of the Sea ]  
     • <———— -1——— • <——— -1——— •  
      | collects information] [on  the gut contents] [of  many fishes] 
       <— -3—• <— -1— • <——— -1————— • <——— -1———— • 
      |  [ in   order  to  make estimates]   [ of  natural mortality] 
               <——————— -4————— • <— -1—• <———— -1——— • 

 
  <---><---><---> | <---><----><----><----> | <---><----><---> sequences 
   • <-1—•<-1—• 
     <—————————— -3——— • <-1—• <-1—• <-1—• linearised dependency tree 
                          <————————————————— -4—— • <-1—• <-1—•  
  <== chain 1 ==> | <====== chain 2 ======> | <=== chain 3 ==> chains 
 

II.3  Defining a segment made up of 
linked segments 
II.3.a  A segment made up of linked segments: 

the chain of contiguous dependent sequences  
For the sentence above, we can see the shape of 

its dependency tree: this sentence is also partitioned 
into 3 segments in which every sequence depends on 
the preceding sequence. Let us call such a segment a 
chain of contiguous dependent sequences. 

A cut (|) between 2 chains occurs after the leaf of 
the first branch of a 2 branches node, where a 
sequence does not depend on the preceding one. 

Regarding this cut (|) between 2 chains, the 
longer dependencies are, the more frequent the 
comma is at the cut in writing, and the longer the 
pause in speech (see [López 93], chapter 4, pages 
160 to 169). This means that the chain is probably a 
prosodic segment. 

II.4.b  Optimised linearisation of the dependency 
tree => chain partition of the sentence 

When a node has more than one branch, the de-
pendency tree is linearised into the one-dimensional 
sentence by sacrificing some sequence contiguities. 
This linearisation is done according to the following 
optimisation principle: a distended dependency is as 
short as possible. This implies that, when a node has 

more than one branch, the lightest branch (in 
number of nodes) is linearised first: branches are lin-
earised in increasing weight order. This principle is 
weaker than some basic linguistic constraints. For 
instance, subject extensions remain contiguous to it, 
even when verb extensions are shorter. 

 

III.  Application to parsing of 
linear complexity in time 

III.1  A definition of parsing  
As said above (in I.4.b), automatic parsing will 

involve mainly 2 successive stages at every level: 
1) delimiting and identifying segments of the 

written or spoken chain, at different hierarchic 
levels: words, sequences, blocks and sentences, 

2) linking segments: words inside sequences, 
sequences inside blocks, and blocks inside 
sentences. 

 

The parser outputs the only right analysis, be-
cause it should have all criteria to make all choices.  

The parser must also be able to operate in a par-
tially unknown environment, without having as data 
all possible written forms, all possible categories for 
a written form, and all possible sequence, block and 
sentence structures.  

 



Jacques Vergne 

New Methods in Language Processing 94        22/04/05           (final version) - 7/8 - 

III.2  Linguistic properties of segments 
=> segmentation strategies 
III.2.a Defining word categories according to 

sequence partition 
Word categorisation lies on theoretical bases: 

word categories are based on sentence tripartition in: 
words in nominal sequences, words in verbal 
sequences, and words in clip segments.  

III.2.b Segment recognition while climbing the 
segment hierarchy 

Segments are recognised while climbing the 
segment hierarchy, in stages of linear complexity:  
 

1) recognising and pre-tagging words  
2) recognising sequences,  
 tagging and linking words in each sequence 
3) recognising blocks, 
 linking sequences in each block 
4) building the dependency tree:  
 linking sequences between different blocks 
 

It should be noticed that only the most frequent 
sequence structures (in terms of word categories) 
and block structures (in terms of clip and sequences) 
are expected by the parser, but sentence structures 
(in terms of blocks) are only observed. 

 

III.3  Main features of an algorithm of 
linear complexity in time 
An important problem is to find an articulation 

between lexical and positional clues, and a chrono-
logy to use them. 

III.3.a  Pre-tagging words  
1) dividing the sentence into words 
amalgams are divided: du  -> de  le   
elided words are separated:  l'eau  -

> l'   eau    
2) giving a default pre-tag to every word, without 

an exhaustive dictionary 
We can make a typology of 3 types of words, 

according to their neology type, with a specific 
solution for every type: 

-a- grammatical words, with almost no neology, 
belong to small and finite sets: clips, determiners, 
pronouns, quantifiers, adverbs not derived from 
adjectives; solution: a small lexicon (400 forms in 
French), (words are pre-tagged at 55% here); the 
output is a unique default category for every word, 
which will remain if no contextual deduction occurs 
on this word during the next stage. For example, le 
la les are determiners in most cases and sometimes 
object clitics: they are pre-tagged determiners; 

-b- verbs, where neology is very low, belong to 

an almost finite set; solution: a lexicon of verb roots 
(about 7000 verbs in French ≈ 50 Kb) with codes for 
forms which are homographs of nouns or adjectives, 
and some ending rules to handle neology (words are 
pre-tagged at 17% here); 

-c- nouns, adjectives (and adverbs derived from 
adjectives), where neology is very rich, belong to an 
almost infinite set; solution (for alphabetic lan-
guages): extract ending rules from a base of forms 
(from BDLex); an ending rule enables possible cate-
gories (most often only one), genders, numbers to be 
deduced from an ending (about 500 rules are 
enough) (words are pre-tagged at 27% here). 

At this stage, if a word does not match up with 
any ending rule (1%), it is a noun or an adjective 
with an unknown gender and number. 

III.3.b  Recognising sequences => tagging and 
linking words in sequences 

Sequence recognition is a symmetrical process for 
nominal sequences and verbal sequences; the 
strategy is to make the sequence tripartition appear, 
by colouring the words in 3 colours, spreading the 
colours inside sequences, and obtaining one colour 
and one category for every word: 

1) colouring words in 3 colours by a propagation 
of local deductions 

These deductions are done with interpreted 
declarative rules (< 100). 

A local deduction rule has the form:  
  filter => new attributes  
A rule concerns 2 to 5 contiguous words. For one 

word, the filter may concern the following at-
tributes: colour (actually a generic category), cate-
gory, written form, lemma, gender, number, person; 
Boolean operators may be used. For a given word, 
the new attributes may be a colour or a category.  

They may be applied in two ways: the new at-
tribute was either present or absent before applica-
tion; this second way is mentioned by a prefixed at-
tribute; it is used when there is no need to know 
anything about the word: the position in relation to 
the preceding words of the rule is enough to decide; 
this is used to tag a neologism, or to give a category, 
irrespective of the tag given at pre-tagging. 

The propagation goes from left to right in the sen-
tence: the chronology of understanding a sentence. 
For a given word, all rules are tested.  

Their application is independent of their order: a 
rule compiler verifies that there is no pair of 
contradictory rules (non-empty filters intersection, 
and contradictory right members). Every time a rule 
is applied, sequence borders are updated. 

Here are some totally sure linguistic principles on 
which the most frequently applied rules are built: 

after a preposition (different from d' de à pour 



A non-recursive sentence segmentation, applied to parsing of linear complexity in time 

- 8/8 - New Methods in Language Processing 94        22/04/05           (final version) 

sans après), a nominal sequence begins; 
after a determiner, a nominal sequence continues; 
after je tu il on ils, a verbal sequence begins; 
between 2 prepositions, the first different from d' 

de à pour sans après, there is a noun. 
2) studying every sequence: checking sequence 

structure and observing internal agreements 
Nominal and verbal sequences structures are 

checked, and agreements are observed and 
computed: in nominal sequences, gender-number 
agreement between noun, determiner and adjectives, 
in verbal sequences with a form of "être", number 
agreement between "être" and attribute or past 
participle. 

Inside sequences, dependencies on the central 
element (noun or verb) are computed. 

3) if non-validated structure, finding a cut 
between 2 sequences 

Two contiguous sequences of the same type have 
been coloured as a single sequence: the structure is 
then not validated, and the 2 sequences are separated 
into 2 parts, and their structures checked again.  

4) updating the lexicon of the text 
At the end of this step, sequences are recognised, 

words tagged and lemmatised, and the lexicon of the 
text updated.  Sentences of the French corpus are 
correctly coloured at more than 99%, with a right 
word tagging better than 99%.  

III.3.c  Recognising blocks and linking 
sequences within each block 

1) compressing sequences into a single code 
Nominal sequences are coded:   N   
Verbal sequences are coded by type:  
   conjugated: V       infinitive:  I 
 present participle: R  past participle:  ù 
 
All following processing is done on this pattern. 
2) processing this pattern with interpreted 

declarative deduction rules (about 40) 
These rules locate the beginning of blocks, 

recognise blocks or block parts made up of contigu-
ous elements and compute dependencies within 
blocks, even if a block is cut in parts, when it sur-
rounds other blocks. A deduction rule has the form: 

  filter => new attributes  
A rule concerns 1 to 5 elements. For one element, 

the filter may concern the following attributes: 
sequence or clip category, block border ([]); 
Boolean operators may be used. For one element, 
the new attributes may be a block border and/or a 
relative integer which gives the relative position of 
the element on which it depends within the rule, 
even if the block is in 2 parts.  
-a- locating beginnings of blocks  (6 rules) 

as blocks begin with clips, every clip marks the 
beginning of a block:    [p   [,   [c 
-b- recognising blocks or block parts  (20 rules) 

these segments are made up of contiguous 
elements:   [p + N =>  1 + ]    
-c- recognising 2 parts of the same block  (15 rules) 

The principle of this stage is to recognise the 2 
edges of an insertion point (see insertion points in 
II.1.b above), even if there is no inserted block 
(contiguous edges): left edges are stacked (the only 
action of the right member of 6 rules): they are 
mainly subjects waiting for a verb, or verbs waiting 
for an object; right edges are recognised together 
with the nearest stacked left edge (9 rules): they are 
mainly verbs for a stacked subject, or objects for a 
stacked verb. Insertion indentation of inserted blocks 
is incremented; insertion indentation is a topological 
constraint to join 2 block parts of a same block: they 
must be at equal insertion indentation.  

The expected result is obtained in more than 98% 
sequence dependencies within blocks. 

III.3.d  Building the dependency tree by linking 
sequences of different blocks 

As said above (II.2.c) no pure positional means 
have been found today for linking 2 sequences of 
different blocks. Valuation functions have been used 
(see [Vergne 90]), and the expected result was 
obtained in about 85% dependencies between dif-
ferent blocks. But another hypothesis is now being 
explored: every sequence depends on the preceding 
sequence, at equal insertion indentation (a 
topological constraint), except in the 4 cases listed 
above (II.2.b). Some linguistic constraints are 
applied: for instance, a prepositional block without a 
determiner cannot be the "reigner" of a prepositional 
block with a determiner. The explored hypothesis is 
that topological and linguistic constraints are suffi-
cient to link sequences between different blocks.  

The first computed result is already of the same 
quality, but it will be improved, because we are in 
the early stages of exploring this hypothesis. 

III.4  The linear complexity in time of the 
algorithm 
This complexity may be evaluated in 2 ways: 

formal and practical. 
On the formal point of view, the source program 

is made up of a constant number of one-level repeti-
tive processes on the number of words or on the 
number of sequences of a sentence; practically, the 
cloud of points parsing time – number of words of a 
sentence shows the linearity of the phenomena 
(linear regression determination coefficient = 0.98). 

 



Jacques Vergne 

New Methods in Language Processing 94        22/04/05           (final version) - 9/8 - 

Conclusion 
This work attempts to renew the syntax of natural 

languages by conceptually separating segmentation 
from dependency, therefore defining (and observing 
on corpora) a hierarchy of non-recursive segments. 

With these linguistic bases, it is possible to build 
non-combinatorial parsers, therefore working with 
linear complexity in time: "man triumphs over 
nature only by obeying it" (Francis Bacon, 1620). 

 

References 
[López 93] Eduardo López Gonzalo:  Estudio de 
técnicas de procedado lingüistico y acústico para 
sistemas de conversión texto-voz en español basa-
dos en concatenación de unidades    tesis doctoral, 
E.T.S.I. de Telecomunicación, Universidad 
Politécnica de Madrid,  julio de 1993. 

[Lucas 92] Nadine Lucas:  Syntaxe du para-
graphe dans les textes scientifiques en japonais et 
en français    Colloque international: Parcours 
linguistiques de discours spécialisés, Université 
Paris III,  septembre 1992, Peter Lang ed. 1993. 

[Lucas 93] Nadine Lucas, Nishina Kikuko, 
Akiba Tomoyoshi, K.G. Suresh:  Discourse 
analysis of scientific textbooks in Japanese: a tool 
for producing automatic summaries    Departement 
of Computer Science, Tokyo Institute of 
Technology,  March 1993. 

[Tesnière 59]  Lucien Tesnière: Eléments de 
syntaxe structurale    Klincksieck (Paris)  1982. 

[Vergne 90]  Jacques Vergne: A parser without a 
dictionary as a tool for research into French syntax  
communication-demonstration at CoLing 90  
International Conference on Computational 
Linguistics   vol. 1 pp. 70-72,  Helsinki, Finland, 
August 1990. 

[Vergne 92] Jacques Vergne: Syntax as clipping 
blocks: structures, algorithms and rules   commu-
nication and demonstration at SEPLN 92 congress 
(Sociedad Española para el Procesamiento del 
Lenguaje Natural), pp. 179-197 and 467,  Granada, 
Spain, September 1992. 

• 


